MARK SCHEME for the October/November 2014 series

4024 MATHEMATICS (SYLLABUS D)

4024/12 Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme		Paper
	Cambridge O Level – October/November 2014	4024	12

Abbreviations

cao	correct answer only
cso	correct solution only
dep	dependent
ft	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
WWW	without wrong working

soi seen or implied

Qu	estion	Answers	Mark	Part marks
1	(a)	5.11 oe	1	
	(b)	2 hours and 35 minutes	1	
2	(a)	59	1	
	(b)	$T = \frac{13M}{500} + 20 \text{oe seen}$	1	
3	(a)	-0.5	1	
	(b)	0.1	1	
4	(a)	-5	1	
	(b)	$\frac{x+6}{2}$ oe	1	
5	(a)	1200 cao	1	
	(b)	3	1	
6	(a)	Correct region shaded	1	A
	(b)	3	1	c
7		25	2	C1 for figs. 25 or M1 for $\frac{figs 9}{60 \times 60}$ oe
8	(a)	1:2 oe	1	
	(b)	1:8 oe, or ft <i>their</i> (a) cubed	1√^	

Pa	ge 3	Mark Scheme		Syllabus Paper
		Cambridge O Level – October/N	2014 4024 12	
9	(a)	54.25	1	
	(b)	$\frac{d+0.5}{54.25}$, or ft $\frac{d+0.5}{their(a)}$, seen	1√^	
10		12	2	B1 for "k" = 72 or M1 for $9 \times 8 = 6y$ oe or M1 for $y = (their k)/6$ when $y =$ "k"/x used
11	(a)	1	1	
	(b)	41 40 81 (all three)	1	
	(c)	$(2n+1)^2$ oe	1	
12	(a)	5.67×10^{-4}	1	
	(b)	6 × 10 –12	2	C1 for figs 6, or for the index -12
13	(a)	140	1	
	(b)	1.2	2	M1 for $3 \times \left(\frac{7}{5} - 1\right)$; or $3 \times \left(\frac{their(a)}{100} - 1\right)$; oe or a complete algebraic method.
14	(a)	10	1	
	(b)	216	2	M1 for $\pi \times 6 \times 10 = \frac{x}{360} \times \pi r^2$ or $2 \times \pi \times 6 = \frac{x}{360} \times 2\pi r$ where $r = 10$ or <i>their</i> (a). Where radians are used, method must include multiplication by $\frac{180}{\pi}$.
15	(a)	720	1	
	(b)	20	2	M1 for $(\pi \times 62 \times d)$ (oe) = $k\pi$ where $k = 720$ or <i>their</i> (a)

Pag	ge 4	Mark Scheme			Syllabus	Paper
	Cambridge O Level – October/November 2014			2014	4024	12
16	(a)	$\begin{pmatrix} -4 \\ -3 \end{pmatrix}$	1			
	(b)	$\begin{pmatrix} -4 \\ -3 \end{pmatrix}$ $\begin{pmatrix} -3 \\ -4 \end{pmatrix}$	1			
	(c)	5 cao	1			
17	(a)	$p^{5}-3$	2	B1 for p^5 , or f	for – 3.	
	(b)	$3x^2$	2	C1 for 3; C1 for	for x^2	
18	(a)	4 <i>a</i> (1 – 4 <i>a</i>)	1			
	(b)	(3b-c)(3b+c)	1			
	(c)	(x+5)(x-y)	2	B1 for one of t x(x-y); $5(x-y)or their negative$	y); $x(x + 5); y$	
19	(a)	4	1			
	(b)	90°	1			
		two 150° } correctly obtained	1			
		two 135° } correctly obtained	1	If [0] earned for M1 for	or the two 150)s, award
				using 360° cor or for using 54 pentagon, or for using 72 hexagon, to find the 135	0° correctly i	n a
				If [0] earned ir sum of a hexag		

Pag	ge 5	Mark Scheme			Syllabus	Paper
		Cambridge O Level – October/November 2014			4024	12
20	(a)	68	1			
	(b)	44	1			
	(c)	112 or ft 180 – <i>their</i> (a)	1√			
	(d)	44 or ft <i>their</i> (b)	1√^			
21	(a)	Correct completion of tree diagram	1			
	(b)	(i) $\frac{1}{10}$	1			
		(ii) $\frac{17}{50}$ or ft from <i>their</i> tree diagram	2√^	M1 for $\begin{cases} \frac{2}{5} \times \frac{1}{4} \text{ or their} \end{cases}$	$f(bi)\} + \frac{3}{5} \times th$	heir $\left(\frac{2}{5}\right)$
22	(a)	1.2	1			
	(b)	3.6	1			
	(c)	480	2	M1 for $\frac{1}{2} \times (20)$ or B1 for 180,	or 240, or 60	, or 420, or
				300, as a corre- identifiable app		
23	(a)	(8, 10)	1			
	(b)	$\begin{array}{l} x > 8 \text{oe} \\ 2y > 12 + x \text{oe} \end{array}$	1 1	If 0 scored, the $2y \ge 12 + x$ of		8 oe and
	(c)	(9, 11)	1			
24	(a)	137° to 140° inclusive	1			
	(b)	(i) perp. bisector of <i>AB</i>	1			
		(ii) circle, centre C, radius 4 cm	1			
		(iii) correct region (bottom part) shaded	1			

Pag	ge 6	Mark Scheme			Syllabus	Paper
		Cambridge O Level – October/November 2014			4024	12
25	(a)	$\begin{pmatrix} 1 \\ -1 \end{pmatrix}$	1			
23	(a)	$\left(-\frac{1}{2},1\right)$	*			
	(b)	$-\frac{6}{7}$	1			
	(c)	(i) (10, -8)	2	C1 for one cor	rect coordina	te
		(ii) $\frac{1}{3}$	1			
26	(a)	$\frac{1}{7}$	1			
	(b)	$\begin{pmatrix} -1 & -4 \\ 2 & 0 \end{pmatrix}$	2	C1 for 2 or 3 c	correct elemer	nts.
	(c)	(2 0), or (14 × <i>their</i> (a) 0) ft	2∿^	M1 for ($\mathbf{Y} =$) If ($x \ y$) $\mathbf{A} = (6 \ \mathbf{M1}$ at the stage wh the simultaneo	2) is used, the event of the ev	nen award ot to solve